Deep Learning Methods for Processing Digitized Herbarium
Specimens

Filipe Lucas Borges Seleiro Martins
filipe.seleiro.martins@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

June 2022

Abstract

Hundreds of herbarium collections, currently in Natural History Museums and other similar insti-
tutions, have accumulated a valuable heritage and knowledge of plants over several centuries. Recent
initiatives started ambitious preservation plans to digitize this information and make it available to
botanists and the general public through web portals. Such information is crucial for the study of plant
diversity, ecology, evolution, and genetics. The method of digitization and cataloging using computer
vision, as well as the machine learning approaches applied to herbarium sheets, can both be considered
promising, recent methods based on deep neural network are still not well studied in this problem do-
main in comparison to other areas. We will go over a model that can be used to achieve next generation
precision and utilities for this field of cataloging Herbarium. To achieve this goal, we will explore and try
to apply state of the art techniques, models and architectures to the study case. We will use two models
to extract useful information for cataloging the species, the YOLOv4 model that will have the task of
extracting the labels present on the sheet together with the Transformer model that will extract useful
data for cataloging using a technique of text generation conditioned on images. The results obtained
were inconclusive, because the type of neural network developed was quite recent, more tests would
have to be done. Concluding the model is good for standardized data but fails completely on real world
data that is not very standardized.

Keywords: Transformers, Yolov4, Herbarium, Text generation based on Images, Computer Vision,

Machine Learning

1. Introduction

The preservation of our knowledge is a very im-
portant task. Making it to be available by dig-
ital media simultaneously increases its accessibil-
ity and contribute for the preservation of it. This
preservation task is mostly done by manual labour
in the field of Herbarium collections thus requir-
ing dedicated persons and time. We aim to auto-
mate the cataloging and archivation processes, by
implementing a SOTA Ai model, thus cutting in
half the manual labour. Our solution has the im-
plementation of a non-end-to-end model with the
use of two different types and architectures. The
first model was created with the conventional con-
voluted neural networks CNN and a top charting
model called YOLOv4 for the task of Image Detec-
tion, Recognition, and Classification. This model
will identify the text labels presented on the herbar-
ium sheet. For later cropping text and to be used as
a input for our huggingface [13] transformer model
that will aim to extract relevant data for cataloging
purposes. Despite the unsatisfactory results of our
model to solve this problem, we were able to retrieve

some conclusions about this architecture of multi-
ple decoders and encoders that would allow other
fields to benefit it.

2. Background
In this chapter, we will review the multiple mod-
els architectures that are used in our solution, by
reviewing each implementation and the implemen-
tation of new techniques that made they achieve
top performance.

2.1. Object Recognition and Region Segmentation
- YOLOv4 The First Step For Our Solution

The YOLOv4 (You Only Look Once)v4 [1] a model
that is designed for the task of Object Recognition
and Region Segmentation. This CNN single stage
detector based model will be utilized for identifying
and extracting regions of written data where most
of our information resides on herbarium sheets, we
will explain the model architecture and techniques
used to compose this top charting model.

This model employs multiple techniques that im-
prove on the last iterations . Starting by the Back-
bone : The CSPdarknet53 as the name hints, this

Figure 1: State of the Art typical CNN Architecture
for object detection.

block is composed by 53 layers of convolutions also
that now on YOLOv4 make use of the CSPnet tech-
nique in order to prevent a problem called ” Vanish-
ing Gradient”. This technique splits the input in
two parts , one is routed without any modification,
and another is applied the convolution as part of
feature extraction, in the end of the process it sim-
ply concatenates at the end the result of each path.
The neck is composed by two layers the first is a
SPP: this techniques if done to increase the recep-
tive field this techniques applies multiple parallel
convolution with different kernel sizes and strides
to get multiple contexts for the same layer. Follow-
ing by a PANet modified, this process of instance
segmentation by preserving spatial information that
might improve the detection head.This technique
was a replacemente for the FPN implemented on
the YOLOv3 achieving great results. The head re-
mained the same as YOLOv3 and its main function
to locate bounding boxes and performing classifica-
tion.

Type Filters Size Output
Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128 x128
Convolutional 32 1 x1

1x| Convolutional 64 3x3
Residual 128 x 128
Convolutional 128 3x3/2 64 x64
Convolutional 64 1x1

2x| Convolutional 128 3x3
Residual 64 x 64
Convolutional 256 3x3/2 32x32
Convolutional 128 1 x1

8x| Convolutional 256 3x3
Residual 32 x32
Convolutional 512 3x3/2 16x 16
Convolutional 256 1 x1

8x| Convolutional 512 3x3
Residual 16 x 16
Convolutional 1024 3 x3/2 8x8
Convolutional 512 1 x1

4x| Convolutional 1024 3 x 3
Residual 8x8
Avgpool Global
Connected 1000
Softmax

Table 1: Structure of Darknet-53 from Yolov3

Since the original Yolov4 implementation was on
Darknet, we used a repository made by Tianxiaomo
that had made the accurate translation and imple-
mentation of the model on to python PyTorch. This
translation in conjunction of a module that con-
verts the original Darknet checkpoint trained in MS
COCO dataset into PyTorch checkpoint. Since this
model was not created by us, we will give full credits

to the original creator Tianxiaomo on Github [10].
We fine-tuned the YOLOv4 model using the pre-
trained checkpoint in the MS COCO dataset lead-
ing us to a shorter training period and great results.

2.2. The Transformer Architecture - Self Attention
advancements and the vision transformers

Despite the multiple advances on this field of com-
puter vision, there is a new emerging architecture
that was developed specially to be used with Natu-
ral Language processing (NLP) [11]. With this new
architecture came some important advancements
on attention mechanisms and performance, these
networks called transformers networks were crafted
with a self-attention mechanism in mind and made
huge advancements on the computational efficiency.
These networks are design to be highly parallel com-
putational by design. These networks have been
developed by Google, and multiple models based
on this architecture have been created with a huge
success like Bert[2] achieving the best results for
the NLP [12]. With these advancements there was
a need to experiment and expand the usability of
this architecture on other fields. Leading to the ex-
perimentation on the field of computer vision, the
creation of ViT [4] lead to some great results al-
ready paving the path to be promising model of
Vision Transformers.

There are two main transformer stacks on this

type of architecture an encoder and a decoder.
The encoder where the input sequence = =
(z1, %2, ..., T,) is going to get encoded (conversion to
tensor) to a continuous representation on our space
with vector of z = (z1, 22, ..., 2,), for a given z after
it’s used as a input for the decoder that generates
a vector of our output y = (y1,¥y2, ..., Yn) thus this
architecture has been tensor to tensor or sequence
to sequence.
There is some pre-processing required for our trans-
former to work as intended. This process begins
with the embeddings, which consists of encoding our
input to a vector of size d,,oqe;. This size is static
for any input, and it is going to have a representa-
tion in our vector space, optimally tokens with sim-
ilar meaning should be closer to one another in our
dimension. Since this architecture doesn’t contain
any type of recurrence, it is necessary to add posi-
tional context for each token, this is done through
a positional encoder. Taking the size of our token
and modulating through a sinusoidal function with
different frequencies according to the size.

L pos
PE(pos, 2i) = sin (100002i/d/temtmod6l)

' o pos
PE(pos, 2i + 1) = cos (100002i/d/teztmodez)

Where pos is the current position and i is the to-
tal dimension. The first one is a multi-head atten-

Multi-Head Attention

Add and Normalize

Multi-Head Attention

Multi-Head Attention

Decoder #1

Encoder #1

Positional
Encoding

Input Embeddings
X

Posttional
Encoding

Output Embeddings

y

Figure 2: The Transformer neural network archi-
tecture.

tion mechanism that focuses on how surrounding
positions affect the current one, it achieves this by
doing an all to all comparison and calculating a at-
tention value. Decoder structure is similar to the
encoder blocks while the difference is the repetition
of two sub-layers on each decoder block. The addi-
tional sub-layers that composed the decoder block
are a normalizing layer that regulates the input to
an additional multi-head attention layer. This ad-
ditional layer does a process called masking with
the purpose to impose that the predictions over
the position i are only imposed and related by less
than i positions. Where this network improves is
the new mechanism imposed on the multi-head self-
attention layers allowing to make a correlation be-
tween the inputs and an output set based on the
best probability of our inference. The way these
functions achieve this is by calculating an atten-
tion value for each input that can be described as a
Scaled dot product of multiple values. Those values
that compose the aforementioned attention function
are defined by mapping a query and a set of key-
value pairs to an output, where the query, keys,
values, and output are all vectors.

The scaled dot-product attention can be described 3
by the calculation for each embedding where each
will generate a query vector and a set of key-value
vectors. Those vectors are a representation of use-
ful abstractions relevant to our problem. The vec-
tor are generated by multiplying our input vec-
tor and a weight of matrices that was previously
trained both Query(Q) and Key(K) vector have
the same dimension d; and d, for the Value vec-

Scaled Dot-Product Attention

Multi-Head Aftention

r I
s 1

Mathul

SoftMax

Mask(opt. -
decoder)

[Scale Dot-Product Attention

T T T
C I C I C I
[Linear [Linear [Linear
Q K v Q K v

Figure 3: Scaled-Dot product and Multi head-
Attention.
tor. Since in practice a set of queries are com-

puted simultaneously, we packed them together into
a matrix (Q € R¥*9x) that consists a matrix with
the queries vectors multiplied by the weight matrix
(W& ¢ Rmodelxdr) The same process is applied to
keys vectors and values vectors where each is mul-
tiplied by a two weight matrices (WX ¢ Rmodelxd
and WV € Rmedelxdv) and also packed together
into matrices: (K € RY*%) and (V € RwXd),
Our attention value will be represented as:

Attention (Q, K, V) = softmax (QKt) Vv
n Vdy,

The scale factor was needed to counteract where
large values produced by the dot-product could
push the Softmax function to regions where gra-
dient is small 1 / v/di. So when applying scaling,
our large values number will be pushed closer to
zero where the Softmax function has more variance
thus improving on this limitation. The multi-head
attention mechanism allows our model to access to
multiple representations in different sub-spaced by
concatenating the information from multiple atten-
tion layers, also known as heads. This can be ex-
pressed as:

MultiHead (Q, K, V) =
Concat (heady, heads, ..., heady,) W©

Where head; = Attention (QWiQ, KWK, VWiV)

The training of this network it’s done by Back-
propagation of the error and therefore optimizing
weights.

2.3. ViT - The Image Captioning model

The ViT model is a particular transformer since
it doesn’t use a decoder stack. Introducing the
Transformer networks for image recognition, start-
ing with the first implementations that follow the

traditional Transformer, and the network the Vision
Transformer (ViT) [4]. ViT doesn’t use encoder-
decoder methodologies, it just borrows the self-
attention layers of the encoder but when paired
with a NLP decoder this transformer can be used
for OCR. For this model to be compatible with
the token-like input, we need to reshape the im-
age. This reshaping process is represented by x €
RHEXWXC into a sequence of flattened 2D patches
Tpatches € RVXEXPXC) where H is height and W
the weight of the original image, C is the number
of channels, (P, P) is the resolution of each im-
age patch, and N = H;;QW is the resulting num-
ber of patches, which also serves as the effective
input sequence length for the Transformer. This
2D representation of our image goes through a Lin-
ear Projection to be flattened to a D size vector
X, € RNVX(P?xC)xD

This model also borrows the concept introduced
on BERT’s transformer networks [2]. The use
of a learnable embedding in form of a CLASS
Token embeddingzgy = xcqss, Which consists on
a learnable embedding, that gathers information
from all the patches when attending to Multi-head
Self Attention (MSA) layers. The classification
head simply implements a MLP with one hidden
layer. The classification head only uses this hidden
output from this CLASS token. The authors de-
cided to use the relative position of the patches for
the embedding, to encode the spatial information
instead of their absolute position. They achieve this
by using 1—dimensional for the Relative Attention.

Transformer Encoder ‘

ELLLEE

Patch + Possition mi
Embedding
‘ Linear Projection of Flattened Paiches

|
TTTTT T

> 4 5 5 1

1 2

w

IMAGE

2‘3

4

5‘5

7

s‘n

7 8 s

Figure 4: ViT model Architecture

3. Implementation

Before introducing our implementation of our
model, we have to explain our pre-processing mod-
ule used for data preparation and training data set
creation. We will go over our data analysis from
the acquired data following the process of filtering,
transformation and augmentation of our data set
with computer image generation.

3.1. Pre-Processing

The dataset used is an already established and com-
piled collection with over 1,800 herbarium speci-
mens [3] for the purpose of cataloging. This dataset
has entries that date as late as 1970, so the state
of preservation of the sheets and the legibility could
prove a challenge for our model. Besides this chal-
lenge, this dataset has present multiple languages
that the text labels could be written. All these lan-
guages provide us with a good distribution around
the globe and variety of the data presented on the
labels. With all this complexity and scattered infor-
mation provided by multiple institutions, it is nor-
mal that the data could have some mistakes and
or variances on the time of filling this information,
hence it is essential that our model learns from data
that is correct and partially normalized to a stan-
dard. Our first step to achieve standardization was
a tool that serves to manually annotate our images
from this dataset. The VGG [6] - Image Annotator
(VIA) [5], is a tool that allows attributes to be as-
sociated with the image file to be annotated and/or
each annotation box, in our case the annotations
made are to identify the regions of each text la-
bel and to characterize the quality of the sheet and
label with notes about missing or miss-matched in-
formation.

Drawing of the Text abel region
Filter based on User Input Empty oxes and creation User Input of the atching (Via
Attributes fields Image Labels MetaData > fonts *annotations vs Emy

of the Empty labels Labels size

oty
Simpiification ofthe |,
Text Bores T

; Blender

|| (overiays the Fake
Label ontop Real
Label)

IImage Cropping|
Using Via
annotations

Figure 5: Pre-Processing Module Functions.

Our Pre-Processing module has multiple functions
that work in conjunction to manipulate our data
in order to reach data standardization. This mod-
ule as multiple task: To Filter; Computer generate
more examples from the manual annotated images;
And create the dataset files used on the training of
each model. One early step is to filter the data
based on the json attributes looking for missing
or miss-formatted fields and excluding them from
our usable examples. As example of miss-formatted
fields is the Date field that can have a lot of vari-
ances as in multiple representations due to multiple
standards around the globe. In this case we sam-
pled based on the success of a date parser function
that normalizes and return a formatted date when
successful (dd-mm-yyyy). The middle steps begin
the process of computer-generated images. These
processes will ask the user to provide, images files
of empty herbarium labels and Fonts to each be

placed on a specific path. Then the user will be
prompt annotate each empty label image provided,
using rectangles to indicate the useful space in the
image of the multiple text fields are located. Theses
rectangles will be simplified and eventually turned
into line like textbox where our computer-generated
text will be placed. Before starting to generate com-
puter generated labels or ”fake” labels, we decided
to do a resolution matching between the Via an-
notation of the label’s sizes with the empty label’s
resolution ratio, this is done to cause the minimal
deformation on the labels on the act of overlaying
the fake labels on top of the original labels. Fi-
nally with all the information generated and com-
piled we proceed to the creation of our fake labels.
The first process is based on the previous step that
matched Via label regions with the empty image la-
bel. We start by reading the empty label image json
atributes and simplify the raw rectangles boxes that
the user has previously drawn, converting them into
textbox like. For this to happen we will just explain
briefly the code used. The code used is heavily re-
cursive that test multiple relations boxes to box in
order to combine and or associate them based on
the type and relative position to one another. The
output can be seen on the 6.

b =
= ‘

Figure 6: Boxes Simplification provided with our
demo script

The image on the left is the user input raw boxes
while the right is the simplified output. The Blue
Boxes represent where the text will be split, thus
multiple blue boxes mean the text will be repeated
and split differently according to the useful space
(the green boxes) on each. After this process, we
will run an algorithm that maximizes the text font
size by optimizing the text splits per usable space
and allowing to further subdivide the boxes verti-
cally to create extra text-lines when necessary (This
algorithm does a brute force approach and can be
improved on). The output can be seen 7 applied to
two sentences: ” The quick brown fox jumps over the
lazy dogThe quick brown fox jumps over the lazy
dog”; And "The quick brown fox jumps over the
lazy dogThe quick brown fox jumps over the lazy
dogThe quick brown fox jumps over the lazy dog”.

As for methodologies for blending, we tested multi-

The quick brown

fox jumps over

the lazy dog The

quick brown fox jumps over the fazy

dog The quick brown fox jumps over
the lazy dog

& quick browr
The quick ro?ju‘mpszover
the lazy dog
brown fox lhe quick browr
jumps over the lazy dog The quick fox jumps over the lazy dog The quick
brown fox jumps over the lazy do, brown fox jumps over the lazy doy
The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

The quick
brown fox
jumps over
the lazy dog The quick brown
fox jumps over the lazy dog

The quick brown fox jumps over
the lazy dog The quick brown fox
jumps over the lazy dog

Figure 7: Text Algorithm applied to the Boxes Sim-
plification example

ple combinations of techniques to keep the outcome
as "real looking” as possible, from the methodolo-
gies we tested one combination stood out for to be
the most convincing to be closest to the originals.
The methodologies we tested while developing, we
decided to keep all in code allowing the user to
choose from multiple blending techniques. To ex-
plain the method, we did the blending we will go
over each steps one by one: firstly we start gen-
erating a flat colour patch to be blended to cover
the original label with the most common colour of
the original label; Then we colour transfer from the
original label to the ”"fake” generated label; Lastly
we Laplacian Pyramids blend the images. The fifth
step is a function that splits the text into lines of
text in order to maximize the font size per usable
space. The sixth step blends the complete fake label
onto the original using Laplacian Pyramid Blend
technique with colour matching. After the image
multiplication, we will scale down and crop and
save each label to a file in order to generate the in-
puts for our models. The YOLOv4 model requires a
square image of resolution that is part of the series
of (320 + 96 * N) x (320 + 96 * N) n € Z to train
and the transformer requires the pre-cropped labels
as the input. The last two steps are just creating
the files required to each training module.

\4 Original

frpentn Lk

Fake

™ QUESYRUL

e 15 due Y of Rogisteo
oo lm oo of SHYE BAR-
) Nowe ronttor

QULRNI0

Figure 8: Results of generated fake labels blend
onto a real image

3.2. Transformer model - The Hugging Face Imple-
mentation

This section will explain our implementation path
and the limitations, we had to overcome for our
implementation. We will skip the YOLOv4 imple-
mentation since we only use it for data extraction
and was not developed by us. To keep the focus
on our development. We will directly go in a depth
explanation about our transformer architecture de-
sign and implementation in the hugging face library.
Our model was developed with some concepts and

Custom_Encoder

Last Hidden State {patch_size=1,
sequence_length, lord,

Encoder_Image _size}

‘Add and Normalize
| Mult-Head Aftention

nnnnn

‘Add and Normalize

| Mult-Head Aftention

Positonal

1
g
Pixel Values {1, 3, 224, 224}

E
‘ Pue Values (1, =3, K, W) H
T
T
T
T

i

‘ Pixel Values {1, 3 x (N +x), 224, 224} ‘

Positional
Encoding

Pixel Values {1, Cx (N + 1), H, W} ‘

f

‘ Pue Values (1, =3, K, W)

{-)
SRR EETTTTITT

Lnear oo ofFaten Pecnss |

H‘HHH‘T

Fullmage [~ 4 [5 | &

Figure 9: Model design encoder part using ViT en-
coder as example with Single Batch processing

ideas that were yet to be fully researched and tested,
in this case study we have implemented a multi en-
coder to multi decoder architectural modeling in ex-

pectation that each transformer stack would func-
tion as a specialized worker in our process.

Starting by our custom encoder modeling this
torch module is comprised by two encoder stacks
of the same model. Each encoder transformer stack
is tasked to encode a different type of images. In
expecting that would allow the attention mecha-
nism to focus on the relevant data of each image
type presented. One encoder stack called the en-
coder_image and is responsible of encoding the full
sheet image where the specimen is presented while
the second encoder called encoder_label is responsi-
ble to encoder of the image labels that are identified
by our YOLOvA4.

With the same present logic that the attentions
mechanism can be exploited to do different tasks.
Our implementation of the custom decoder module
is composed by three decoder stacks of the same
type, since each attention mechanism present on
each decoder stack is required and will work to iden-
tifying and extract different data, we hope that this
model architecture will prove a hypothesis that we
can exploit attention mechanism to function as a
NER. Each of the three decoders stacks in our cus-
tom decoder aims to extract different type of data:
one is tasked to identifying the Specimen name
and/or family; Another the Location of capture;
Lastly one decoder for the Date of capture. While
the data for the decoder that extract Location and
Date can only be found on text on the multiple la-
bels per sheet the Specimen/Family is expected not
only to work as a tOCR like the other, to extract
datafrom the written text label but to attend to the
full sheet in hope of helping on the identification of
the specimen.

If this works this multiple decoder architecture,
this could lead on creating a opportunity on other
fields to exploit attention mechanism to perform
other tasks.

The module we modified, and reverse
engineered was the hugging face model-
ing_vision_encoder_decoder.py [13], our mod-

ifications were made to be addictive by not
compromising any features in place and or the
usability of our custom module. An advantage of
decision of implementing this model architecture in
the hugging-face is that by modifying just modeling
block instead of implementing the model in Py-
Torch, we could test multiple vision encoder stack
model in combination of any transformer stack as
decoder, that are currently available in the hugging
face without requiring any code modification. This
will give us the possibility to test multiple model
combinations already available on hugging face and
hugging face community library and possibly allow
more user to experiment with this modeling block.

The first challenge, we were required to surpass

is the way we input our images to the model. The
hugging face has a protocol that is required to fol-
low since the model need information for the beam
search inference. In Order to understand what the
input tensor represents we recurred to the develop-
ing tools pairing with inspecting the output from
ViT feature_extraction [13]. We found what each
dimension from the input tensor has four dimen-
sions comprised of:

Pixel_Values =
(Batch, Number_of _Channels, Width, Height)

With this challenge in mind, we started looking for
a solution. Our solution came by reversing engi-
neering the ViT modeling module. This decision
not only allowed us to achieve our solution but
also a better understanding of what is required to
make our module to function. Later after some
tests, we found that the implementation of vision
encoder stacks allows the input tensor to have un-
limited Number of Colour Channels. This find was
the optimal solution, since any other dimensions are
checked a utilized in some way to the model to func-
tion. By keeping intact, the batch size intact and
the input sizes for the encoder model this means
our first challenge was surpassed.

We still in need to define a protocol in order to
stack and un-stack the Pixel Values using our find-
ings. This protocol is required to keep the identifi-
cation of the two different image types: the single
full image of the herbaria sheet; And the multiple
labels crops images from our YOLOv4 model. The
first step on our protocol was to normalize all the
the input images to three colour channels. Then we
starting to define and order to vertically stack our
images colour channels. By establishing an order to
follow when stacking this would allow to keep the
information of each image type. The order estab-
lishes was based on logic since there is only a single
full image sheet, we decided that this was the first
image to stack leaving the rest of the colour chan-
nels are for the crop label images.

In sum we reserve the first three colour channels
for the Full sheet image and the rest N multiple of
three colour channels are for the labels crop images.
Since our YOLOv4 can provide more than one label
crops image we were required to implement a loop
inside the forward function of our Custom_Encoder
for each crop Pixel_Values to be encoded on the en-
coder_label. As seen 9. The only check we were
required to implement was this model needs a min-
imum six colour channels to be passed as the input.
This been: one image for each encoder stack. Re-
sulting in a vector:

Pixelfvalues(lsheet & lerop) —
(Batch, 2 x 3, Width, Height)

Pixelfvalues(lsheet & 2crop) =
(Batch, 3 x 3, Width, Height)

Pixelfvalues(lsheet & Ncrop) =
(Batch, (1 + N) = 3, Width, Height)

After the image embedding have been processed
by each encoder, we simply concatenate all the
words generated in order the same order as the in-
put. Since the numbers of words may not match
from run to run due to the number labels present
from sheet to sheet can vary from image. We utilize
padding with zeros to the max batch size N_Words
for this tensor in order to indicate the decoder only
the use full values we provide a mask that is natively
supported on these models.

FEncoder_hidden_States_mask =
(Batch, N_Words, hidden_size)

We have to overcome the problem of input sizes
variation per prediction, due to the variation of
the number of label crops per example may vary.
Our solution is to add a parameter called en-
coder_batch_lengths that specifies the number of
images per batch, this value is only checked when
the batch size of the Pixel Values is higher than
one. This decision was to solve this problem
with this variable was that when creating the En-
coder_hidden_States_mask we could do value count
until we found zeros from padding but this is mem-
ory expensive and time consuming we decided to
simply pass this parameter as a input. provide an
example of the Collate function for the dataset [7]
library by huggingface for Dataloader that gener-
ates this value.

Another problem that we needed to surpass found
while testing our model using the generate function.
The generate method on the hugging face trans-
formers is the methods that allows the model in-
ference. The problem encountered is that the gen-
erate function is not prepared to handle multiple
decoder stacks at once. Since this function is a core
function for all models, we decided to not modify
it, due to complexity and importance, any mistake

_—

L

v

Figure 10: Model design decoder part using GPT2
with a LM head as example and Single Batch pro-
cessing

made could be detrimental outcome of our model.
So, our solution needs to circumvent this limitation
any other way. The solution was to declare a single
decoder stack like the default model and by modify-
ing the checkpoint for the purpose of extracting the
weight maps for each decoder stack on our custom
decoder, we could load them individually and run
multiple inferences with the same input and differ-
ent weights map. The inputs used for the decoder
can be resumed as the sum of the encoder generated
'words’. This solution is computer costly since this
run inference N times equal to N the decoder stacks
declared.

With this in mind, we implemented a Training
flag that is used during initialization when this
flag is set to true this initiates our custom multi-
ple decoder stack when is false this initiates a sin-
gle decoder model. For this to work transparent
for the user we implemented a class called genera-
tor_adaptor. Upon initialization this class requires
only the checkpoint path when it’s called, this sim-
ply initialize the model using the configuration file
found on the checkpoint folder created by our train-
ing module and saves the path on a local variable
where the checkpoint is location. By running the
inference method called generate to keep the signa-
ture the same the user is only prompted to pass the

images while the module takes care of splitting the
checkpoint; Loading; And running inference. This
module simply outputs the result of the three infer-
ence runs from each the decoder weights.

4. Results

Since the transformer model is implemented using
hugging face we had to test using other encoder and
decoder combinations like reference along this work.
For that tested with multiple combinations. This
test were done using the available checkpoint from
the huggingface pretrained for each of the follow-
ing models; As encoders we tested model like ViT,
Deit, and Beit; The decoders tested were Roberta,
and GPT2.All this model were trained until the
ten thousand iterations, on a data set with a lit-
tle over eight hundred entries this is around thir-
teen/fourteen epochs and checked the results. In
multiple combinations the error tendency to infinite
or the text generated was close to gibberish leading
us to quit from most combination. From this point
we will reference the combined model as simple the
model.The one that stood out was the combination
using the ViT with GPT2. This combination gave a
semi-usable output since the fifth epoch of training
making us choose clearly this combination for the
rest of the results presented.

4.1. Tests

For these early test we will compare and analyse
only the ViT large and base models and try to get
some conclusions Our full model as a total accuracy
for predicting the labels is around thirty percent de-
pending on the decoder. We suspect that our model
is not complex enough for this type of analysis since
it requires OCR and also attends to the herbarium
specimen characteristics.

For this model performance comparison we be
analysing and sharing some thoughts by analysing
the metric BLEU using sacreBLEU implementa-
tion. The BLEU metric and its implementation is a
model used to obtain a score based on perceptibly
and similarity between the predicament string and
a set of acceptable References Labels or Reference
Label, optimally we want this score closest to one
hundred.

When overlapping the tests, we can see a clear win-
ner but the results were unexpected. Despite the
advantage of the ViT large(384x384) input resolu-
tion in relation of ViT base (224x224), ViT base
manage to achieve better results overall. We sus-
pect that this decrease of score came from the
only difference between when modeling this models.
When choosing ViT large versus the Base there is
a increases the hidden_size tensors thus requiring a
extra linear layer between the encoder and decoder
to make them compatible. This layer is only initial-

ViT to GPT2

30 /_—__
,,,/

25 =

SacreBLUE Score

20,00 50,00 100,00 170,00

Epochs

——Name_Large Location_Large Date_Large

e Name_Base Location_Base DaTe_Base

Figure 11: ViT to GPT2 SacreBLUE Score Results

ized when there is a miss match on the sizes between
the encoder and the decoder, leading us to believe
this could be our culprit for the results seen. By
keeping in mind this tests our results will be using
the ViT-base with GPT2 since these are the better
performer.

4.2. Results

We will present results for two distinct datasets:
one that is similiar to our training dataset that is a
standarized by out data process; Another obtained
using a random data that is not part of our training
dataset thus been not standarized in any way and
may contain some errors, we choose this due to be
well representative of the real world data.

Similar Data of the Training dataset:
BLEU:

Decoder Name: 91,71
Decoder Location: 81,10
Decoder Date: 100
WER:

Decoder Name: 0,074
Decoder Location: 0,18
Decoder Date:0,0
YOLO:

Failed to identify Labels on 2 images of 128
images.

These results present a very different reality than
the previous tests. These results with BLEU sim-
ilarity score above 80% means that this model is
very good at extracting information. Which means
one of two things, that this model may be overfitted
to our traino data set and the layout of the fake la-
bels or simply that the complexity of the real world
data is too random for our model to be able to work,
which we will present next.

Real World Data:
BLEU:
Decoder Name: 3,86
Decoder Location: 2,43

Decoder Date:6,29

WER:
Decoder Name: 1,06
Decoder Location: 1,18

Decoder Date:0,99

YOLO:
Failed to identify Labels on 17 images of 1078

images.

The results are not satisfactory, proving that our
model is not suitable for extracting information
from all cases and only from semi-standardized
data.

This model results can be very good in case of
standardized data but its no suitable for real world
cases. While our results were not satisfactory in
relation of usability on the field, we were time con-
strained for tweaking and fine tuning our parame-
ters of training. Based on the result obtained by the
unpublished paper for tOCR by Microsoft [8] proves
that Deit and Beit paired with RoBERTa [9] can ob-
tain better result than ViT paired with RoBERTa
for the solely task of OCR, we also believe these
models could also have great results for our task,
given the right training.

5. Conclusions
The results of this model are inconclusive but it can
get good results when the data is standardized but
it is not good enough to generalize to random real
world data. Further testing would have to involve
increasing the number of examples on the training
dataset. Transformers are known in general not to
be very good at generalization and very dependent
on how they are trained and on the training data
used. Although the results were subpar to other
attempts this type of multiple encoder to multiple
decoder architecture still has a lot of potential. As
a final thought is that multiple decoders can be ex-
ploited for the attention to extract data or achieve
different goals. For our use case we exploited the at-
tention mechanism to function as a NER with some
grade of success, confirming our hypotheses.
Despite our results we have implemented and
tested a model design that is yet to be studied
in depth (multiple encoder to multiple decoders).
There are multiple fields where this model design
could have great success : one in example is in the
field of CAD when modeling 3d objects across mul-
tiple 2d views in order to generate a single 3d model
and also the reverse could be possible with decon-
structions of a 3d object into 2d views. Another
example can be in the field of multimedia com-
munication in case of video encoding or decoding
that could use motion vector and image frames to
generate more efficient encoders/decoders and also
in the field of NLP with multi translations output
with many possible use cases. Since our design has

been available on GitHub and Documented hope-
fully sheds some light and creates curiosity on pos-
sible more implementation of this type of models.
Especially implementing such a well known library
with great support and continuous improvements
provided by the huggingface team and a striving Al
community will allow more people to be exposed to
these types of models designs and testing on more
use cases.

Acknowledgements

I want to dedicate this section to the teachers that
have guided this thesis and helped me keep in focus
setting the goals clear to accomplish, also by allow-
ing me to change a bit the original thesis proposi-
tion by changing the model to use and allowing to
experiment with more modern architectures, that
lead to this case study of model design. Also to the
teacher of U.C. Computational Intelligence for the
Internet of Things taught by Joao Paulo Carvalho
that sparked the curiosity for this field.

References
[1] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M.
Liao. Yolov4: Optimal speed and accuracy of
object detection, 2020.

J. Devlin, M.-W. Chang, K. Lee, and
K. Toutanova. Bert: Pre-training of deep
bidirectional transformers for language under-
standing, 2019.

M. Dillen, Q. Groom, S. Chagnoux,
A. Giintsch, A. Hardisty, E. Haston, L. Liver-
more, V. Runnel, L. Schulman, L. Willemse,
Z. Wu, and S. Phillips. A benchmark dataset
of herbarium specimen images with label data.
Biodiversity Data Journal, 7:e31817, 2019.

A. Kolesnikov,
T. Unterthiner,

A. Dosovitskiy, L. Beyer,
D. Weissenborn, X. Zhai,
M. Dehghani, M. Minderer, G. Heigold,
S. Gelly, J. Uszkoreit, and N. Houlsby. An
image is worth 16x16 words: Transformers for
image recognition at scale, 2020.

A. Dutta, A. Gupta, and A. Zisser-
mann. VGG image annotator (VIA).
http://www.robots.ox.ac.uk/ vgg/software/via/,
2016.

A. Dutta and A. Zisserman. The VIA anno-
tation software for images, audio and video.
In Proceedings of the 27th ACM International
Conference on Multimedia, MM ’19, New York,
NY, USA, 2019. ACM.

Q. Lhoest, A. Villanova del Moral, Y. Jer-
nite, A. Thakur, P. von Platen, S. Patil,
J. Chaumond, M. Drame, J. Plu, L. Tunstall,

10

[13]

J. Davison, M. Sasko, G. Chhablani, B. Ma-
lik, S. Brandeis, T. Le Scao, V. Sanh, C. Xu,
N. Patry, A. McMillan-Major, P. Schmid,
S. Gugger, C. Delangue, T. Matussiere, L. De-
but, S. Bekman, P. Cistac, T. Goehringer,
V. Mustar, F. Lagunas, A. Rush, and T. Wolf.
Datasets: A community library for natural lan-
guage processing. In Proceedings of the 2021
Conference on Empirical Methods in Natural
Language Processing: System Demonstrations,
pages 175-184, Online and Punta Cana, Do-
minican Republic, Nov. 2021. Association for
Computational Linguistics.

M. Li, T. Lv, L. Cui, Y. Lu, D. Floren-
cio, C. Zhang, Z. Li, and F. Wei. Trocr:
Transformer-based optical character recogni-
tion with pre-trained models. September 2021.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi,
D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. Roberta: A robustly opti-
mized bert pretraining approach, 2019.

@Tianxiaomo. pytorch-yolov4.
https://github.com/Tianxiaomo/pytorch-
YOLOv4, 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszko-
reit, L. Jones, A. N. Gomez, L. Kaiser, and
1. Polosukhin. Attention is all you need. arXiv
preprint arXiv:1706.03762, 2017.

A. Wang, Y. Pruksachatkun, N. Nangia,
A. Singh, J. Michael, F. Hill, O. Levy, and S. R.
Bowman. Superglue: A stickier benchmark for
general-purpose language understanding sys-
tems, 2020.

T. Wolf, L. Debut, V. Sanh, J. Chaumond,
C. Delangue, A. Moi, P. Cistac, T. Rault,
R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu,
T. L. Scao, S. Gugger, M. Drame, Q. Lhoest,
and A. M. Rush. Transformers: State-of-
the-art natural language processing. In Pro-
ceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Sys-
tem Demonstrations, pages 3845, Online, Oct.
2020. Association for Computational Linguis-
tics.

